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1. Introduction

Most of the recent work on coordinate noncommutativity has restricted itself to two spacial

dimensions, where the commutator [x, y] = iθ is implemented through the Groenewold-

Moyal [1] star product; θ is constant for flat two-geometries and somewhat more compli-

cated for spherical ones [2, 3]. In dimensions higher than two this procedure clearly breaks

rotational invariance. One of the purposes of this work is to introduce coordinate noncom-

mutativity for unbounded N dimensional spaces and yet maintain SO(N) invariance for

the resulting dynamics. In fact, through the introduction of a gauge potential the dynamics

can be made invariant under SO(N, 1) transformations. The extra N symmetries, those

beyond SO(N), should not be viewed as usual Lorentz transformations as they do not

involve time, but rather as “translations”. Implementation of such translation symmetries

will necessitate the introduction of a gauge potential. The present treatment differs from

ones in which Poincaré symmetry is achieved through the introduction of a “twist” [4, 5]

into the action of that algebra while maintaining noncommutativity on a two dimensional

plane. The noncommutativity discussed here is fully N dimensional and involves an algebra

larger than the one generated by the coordinates. Rotation symmetry is achieved without

deforming the angular momentum algebra.
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As in ordinary quantum mechanics the coordinates are operators and their measured

values are determined by which states matrix elements are taken in. For ordinary, coordi-

nate commuting, quantum mechanics we may choose these states to be simultaneous eigen-

states of these coordinates; noncommutativity precludes having a simultaneous eigenstate

of all the coordinate operators. Coherent states [6] are those that minimize momentum-

position uncertainty and it is tempting to use their analogs for the problem of coordinate

noncommutativity. Such states have been applied to investigations of noncommutative

geometries [7], principally the ones induced by the star product rules.

One of the primary properties of coherent states is their minimization of the uncertainty

in the measurement of noncommuting operators; however none of these measurements have

sharp expectation values. In the present formulation we will find that the dispersion of any

coordinate introduces two distance regimes.

〈X2〉 − 〈X〉2 ∼ θ̄ +
1

κ2
〈X〉2 , (1.1)

with κ a very large number and coordinate noncommutativity determined by θ̄. For dis-

tances less than κ
√

θ̄ the fluctuations in measurement of these quantities are of order
√

θ̄

while for distances greater than κ
√

θ̄ there is a fixed strain of ∼ 1/κ. (The notation θ̄ and

its relation to θ will be made apparent in the subsequent text.) As mentioned above, κ has

to be very large — how large will be discussed in section 6.

A general formulation of coordinate noncommutativity based on viewing these coordi-

nates as expectation values of operators between generalized coherent states is presented

in section 2. The procedures for integration and for differentiation of functions of coor-

dinates, when these are treated as expectation values of operators are discussed as is the

implementation of translation invariance through the introduction of a gauge potential.

The subsequent three sections are specific applications of section 2 to various dimensions

and groups.

Noncommutativity in two spacial dimensions based on Heisenberg-Weyl coherent states

is discussed in section 3. Many modifications of quantum mechanics are the same as

those obtained in the star product formulation; it is the presence of fluctuations in the

measurement of any length and in the implementation of the translation invariance by the

introduction of a gauge potential discussed above that makes the two approaches different.

Although the Heisenberg-Weyl group is not in the SO(N, 1) class this section serves as

a pedagogical introduction to the use of coherent states in coordinate noncommutativity

both in two and in higher number of dimensions.

Two dimensional noncommutativity based on coherent states of the 2 + 1 dimensional

Lorentz group, SO(2, 1) ∼ SU(1, 1) is discussed in section 4. Many of the complications that

will occur when extending these ideas to higher dimensions will be encountered here, but the

algebra is sufficiently simple that results are obtained in closed form. Section 5 goes through

in detail the three dimensional case based on SO(3, 1) where coordinate noncommutativity

and rotational invariance coexist. In section 6 extensions to dimensions greater than three

and the problems of time-space noncommutativity are noted. A discussion of fluctuations
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in the measurement of any coordinate, as presented in (1.1), is given. Technical details of

several calculations may be found in the appendices.

2. Coordinates as coherent state expectation values

Our goal is to obtain a theory invariant under N dimensional rotations. To this end we will

consider coherent states based on the groups, SO(N, 1) [6]; an exception will be for one

of two versions of two dimensional noncommutative quantum mechanics, the one based

on the Heisenberg-Weyl algebra. We should note that the Heisenberg-Weyl group is a

contraction [8] of SO(2, 1). As taking over the general discussions of this section to the

Heisenberg-Weyl group are straight forward the details will be presented for the SO(N, 1)

cases. In addition to the SO(N) rotation operators Mij , there are N “noncompact” oper-

ators Ki whose commutation relations are

[Ki,Kj ] = −iMij ; (2.1)

the minus sign in the above is crucial as it distinguishes this algebra from compact SO(N +

1). We will be interested in unitary representations of this algebra that contain all the

representations of SO(N) starting with a one dimensional one; the states are labeled as

|j,m;κ〉, where |j,m〉 are irreducible representations of SO(N) and κ2 is the value of the

invariant Casimir operator K2− 1
2MijMij; j = j0, j0+1, j0+2, . . . with the j0 representation

being one dimensional; except for N = 2, j0 will be the zero angular momentum state.

The usual generalized coherent [6] states are defined as

|~η;κ〉 = ei~η· ~K |j0;κ〉 . (2.2)

The next task is to determine the operators ~X which will represent the coordinates.

The measured value of ~X will be 〈~η;κ| ~X |~η;κ〉 and similarly for any observable F ( ~X) its

measured value will be 〈~η;κ|F ( ~X)|~η;κ〉. This requirement puts several restrictions on the

choice of κ and on the choice of the operators ~X .

(a) As |~0;κ〉 will be taken to correspond to zero length, 〈~η;κ| ~X |~η;κ〉 should be equal to

η̂x(|η|) with x(|η|) monotonic in |η| and x(0) = 0.

(b) In order to control the fluctuations in the values of the coordinates we require that

〈~η;κ|X2
i |~η;κ〉 − [〈~η;κ|Xi|~η;κ〉]2 ¿ [〈~η;κ|Xi|~η;κ〉]2 , (2.3)

or more generally

(c) the cumulants [9] of ~X, defined as

Qijk... =
−i∂

∂qi

−i∂

∂qj

−i∂

∂qk
. . . ln[〈~η;κ|ei~q· ~X |~η;κ〉]|qi=0 , (2.4)

should satisfy Qijk... ¿ QiQjQk . . ..
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Conditions (b) and (c) require that the states we chose minimize 〈~η;κ| ~X2|~η;κ〉+A〈~η;κ|( ~X ·
n̂)2|~η;κ〉 subject to the constraint that 〈~η;κ| ~X · n̂|~η;κ〉 is fixed; n̂ is the direction along

which we wish to measure ~X and the constant A in the above equation allows for a different

expectation value for X2 along n̂ and transverse to it. This naturally leads to the variational

problem of finding an eigenvector of the operator ( ~X)2 + A( ~X · ~n)2 + ~λ · ~X, with ~λ being

a Lagrange multiplier fixing the average value of ~X. The coherent states, with ~η ∼ ~λ

and κ dependent on A, will be shown to be solutions of such an eigenvalue problem; the

choice of ~X will also lead to condition (a) being satisfied by these states. Even though the

generalized coherent states are solutions of the above discussed variational problem, we

shall note that conditions (b) and (c) are satisfied only for representations whose Casimir

operators have very large values. This condition also prevents large momentum-momentum

uncertainty relations. For two spacial dimensions, ~X and ~K will be dual to each other.

This will no longer be the case for higher dimensions.

A further complication arises for N ≥ 3. It will be impossible to satisfy conditions (b)

and (c) above using expectation values of position operators in coherent states as those

discussed till now. Taking a superposition of such matrix elements will solve this problem.

Namely we define

〈〈~η|F ( ~X)|~η〉〉 =

∫

dκh(κ)〈~η;κ|F ( ~X)|~η;κ〉 , (2.5)

for a suitably chosen h(κ), with
∫

dκh(κ) = 1; rather then taking expectation values

in pure coherent states |~η;κ〉 we do it in an ensemble described by the density matrix

ρ =
∫

dκh(κ)|~η;κ〉〈~η;κ|. Expectation values defined in this way will satisfy all the above

conditions.

An extension of the concepts of integration over space and of differentiation to the

present situation in which coordinates are treated as expectation values of operators in

coherent states is available. The over completeness [6] of these states and the resolution of

unity,
∫

µ(η;κ)d~η |~η;κ〉〈~η;κ| = 1, with µ(η;κ) a representation dependent weight, permits

the identifications
∫

d~x f(~x) → NI

∫

µ(η;κ)d~η 〈~η;κ|f( ~X)|~η;κ〉 ,

∂jf(~x) → ND[iKj , f( ~X)] , (2.6)

with NI and ND constant; NI is chosen so that, for small η, NIµ(0;κ) d~η = d~x and ND is

chosen to yield ND〈0;κ|[iKi,Xj |0;κ〉 = δij . Some properties of this “derivative” have to be

checked. The over completeness of the coherent states makes
∫

µ(η;κ)d~η 〈~η;κ|f( ~X)|~η;κ〉
proportional to TrF ( ~X), where the trace is taken over a specific representation. Thus we

find that the integral of a derivative is zero. Likewise, the Leibniz rule is satisfied.

As mentioned earlier, we can extend invariance to the full SO(N, 1) group rather

than just limiting it to the SO(N) rotations generated by the operators Mij ’s. Under the

“translations” ~X → T †(~a) ~XT (~a), with T (~a) = exp i~a · ~K, completeness of the coherent

states and the fact that these are built on a one dimensional representation of the rotation

group guarantees
∫

µ(η;κ)d~η 〈~η;κ|T †(~a)f( ~X)T (~a)|~η;κ〉 =

∫

µ(η;κ)d~η 〈~η;κ|f( ~X)|~η;κ〉 . (2.7)
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To maintain this invariance for expressions involving derivatives, namely, [Kj , f( ~X)] a

gauge potential Tj( ~X) has to be introduced with [iKj , f( ~X)] replaced by

[iKj − iTj( ~X), f( ~X)] and

Tj( ~X) → T †(~a)Tj( ~X)T (~a) − T †(~a)[Kj , T (~a)] . (2.8)

The need to modify translations in the context of noncommutative geometries has been

discussed in [5]. The field tensor associated with Tj is

Fij = [Ki,Tj] − [Kj ,Ti] − [Ti,Tj ] − [Ki,Kj ] ; (2.9)

note that the last term has no analog for the case of ordinary derivatives but is necessary

for having Fij transform under rotations in the expected way, Fij → T †(~a)FijT (~a).

In this work, which concentrates primarily on kinematics of coherent state noncom-

mutativity, we have little say about the nature of this gauge potential Tj. The field ten-

sor, (2.9), can be used to give it dynamics (details will be provided in the next section).

The gauge potential influences the evolution of the coordinates Xi and these, as they are

“charged” under this potential, will act as sources for the Tj’s.

3. Two dimensional noncommutativity based on coherent states of the

Heisenberg-Weyl group

The Heisenberg-Weyl algebra consists of the elements Ki, i = 1, 2 and 1 with [Ki,Kj ] =

iεij1. The coordinate operators are taken to be proportional to the dual of the Ki’s

Xi =
√

θεijKj , (3.1)

resulting in the commutation relation

[X1,X2] = iθ . (3.2)

We look for a state in which the expectation of ~X is specified and the average of ~X · ~X

is a minimum. The standard variational principle leads us to look for an eigenstate of
~X · ~X − ~λ · ~X , where the λi’s are Lagrange multipliers. With |0〉 annihilated by K1 + iK2,

the coherent state

|~η〉 = ei~η· ~K |0〉 , (3.3)

with ~λ = 2
√

θ~η is a solution of the variational equation and

〈~η| ~X |~η〉 =
√

θ~η . (3.4)

From

〈~η|ei~q· ~X |~η〉 = ei
√

θ~q·~η− 1
4
θq2

(3.5)

we can find the cumulants of ~X, specifically

〈~η|XiXj |~η〉 − 〈~η|Xi|~η〉〈~η|Xj |~η〉 = δij
θ

2
(3.6)
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and all higher cumulants are zero. As we wish to interpret the expectation values of

functions of ~X as measurements of these quantities, it is gratifying that the fluctuations

of these position variables are under control. As mentioned in the introduction and in

section 2, this is a guiding principle in choosing states and the operators ~X .

Any classical function of the coordinates f(x) =
∫

d~q f̃(~q) exp i~q · ~x may be transformed

into a similar integral with the c-numbers ~x replaced by the operators ~X . The product of

exponentials of the ~X’s reproduces the star product rules in that

ei~k· ~Xei~q· ~X = ei(~k· ~X+~q· ~X)e
iθ
2

εijkiqj . (3.7)

Following (2.6) we have a transcriptions of integration over space and of differentiation

∫

d~x f(~x) → θ

2π

∫

d~η 〈~η|f( ~X)|η〉 ,

∂jf(~x) → −i√
θ
[Kj , f( ~X)] . (3.8)

This also leads to the identification of momentum with the Ki’s

~pψ(~x) → −1√
θ
[ ~K,ψ( ~X)] (3.9)

which might lead one to worry that the
√

θ in the denominator will introduce a large

uncertainty relation for momentum components. This is not the case [10] as we are making

the identification of momenta with commutators of K’s and by the Jacobi identities

[Ki, [Kj , ψ(~x)]] = [Kj , [Ki, ψ(~x)] . (3.10)

The observation that

[−Kj , e
i~q· ~X ] =

√
θqie

i~q· ~X (3.11)

as an operator identity and (3.7) leads to an algebra identical to the star product one in

that

θ

2π

∫

d~η 〈~η|[Kj , ψ( ~X)][Kj , ψ( ~X)]|~η〉 = −
∫

d~x ∂jψ(x)∂jψ(x) ,

θ

2π

∫

d~η 〈~η|ψ1( ~X) . . . ψn( ~X)|~η〉 =

∫

d~xψ1(x) ? . . . ? ψn(x) . (3.12)

To see the restrictions of translation invariance it is useful to study two particles

interacting by a potential V ( ~X(1) − ~X(2)) =
∫

d~q Ṽ (~q) exp(i~q · ~X(1)) exp(−i~q · ~X(2)). The

potential term in a Lagrangian,

LV =
θ2

4π2

∫

d~η(1) d~η(2) 〈~η(1), ~η(2)|ψ∗( ~X(1), ~X(2))V ( ~X(1) − ~X(2))ψ( ~X(1), ~X(2))|~η(1), ~η(2)〉 ,

(3.13)

is invariant under the two particle analog of (2.7)

ψ( ~X(1), ~X(2)) → T †(~a)ψ( ~X(1), ~X(2))T (~a) , (3.14)
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with

T (~a) = ei~a· ~K(1)
ei~a· ~K(2)

. (3.15)

For the kinetic energy part to be invariant a gauge potential, T ( ~X) transforming as in (2.7)

has to be introduced.

LK =
−1

4π2

∫

d~η(1) d~η(2) 〈~η(1), ~η(2)|
{

[K
(1)
j − Tj( ~X(1)), ψ∗( ~X(1), ~X(2))][K

(1)
j − Tj( ~X(1)), ψ( ~X(1), ~X(2))] (3.16)

+ [K
(2)
j − Tj( ~X(2)), ψ∗( ~X(1), ~X(2))][K

(2)
j − Tj( ~X(2)), ψ( ~X(1) , ~X(2))]

}

|~η(1), ~η(2)〉 ;

Dynamics for the gauge potential can be introduced through the field strength tensor

Fij , (2.9).

LT = − 1

8π2g2

∫

d~η 〈~η|∂tTi( ~X)∂tTi( ~X) + Fij( ~X)Fij( ~X)|~η〉 ; (3.17)

g is a coupling constant. As the “translations”, T (~a) are time independent, the above is

invariant under (2.8).

The fact that the values of the coordinates are not sharp and the inclusion of the

translational gauge potential T ( ~X) differentiates this formalism from the star product one.

4. Two dimensional noncommutativity based on coherent states of the

SO(2, 1) ∼ SU(1, 1) group

Two dimensional coordinate noncommutativity can be obtained using coherent states built

on representations of the 2+1 dimensional Lorentz group SO(2, 1) whose algebra is isomor-

phic to the one for the SU(1, 1) group. Three generators J,Ki, with i = 1, 2, span this

algebra. J is a rotation operator and the K’s are boosts. The commutation relations are

[J,Ki] = iεijKj

[Ki,Kj ] = −iεijJ ; (4.1)

the minus sign on the right hand side of the lower equation is necessary to distinguish

this algebra from the compact SO(3) one. We shall be interested in the unitary, irre-

ducible representations of this group [11] that consist of a tower |0; j〉, |1; j〉, |2; j〉, . . . of

one dimensional representations of J with with eigenvalues greater or equal to zero. With

K± = K1 ± K2 the action of the operators is

J |n; j〉 = (n + j)|j〉
K+|n; j〉 =

√

(n + 1)(n + 2j) |n + 1; j〉 (4.2)

K−|n; j〉 =
√

n(n + 2j − 1) |n − 1; j〉 .

The Casimir invariant J2 − ~K · ~K = j(j − 1). The coherent states [6, 12] are

|~η : j〉 = ei~η· ~K |0; j〉 , (4.3)
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and the resolution of unity is

1 =
2j − 1

4π

∫

sinh η dη dη̂ |~η; j〉〈~η; j| . (4.4)

We now have to chose the operator that corresponds to the position vector ~X. The

simplest choice is, as in the previous section, Xi = −
√

θεijKj ; the minus sign is for subse-

quent convenience. (In appendix A we show that the coherent states are solutions to the

appropriate variational problem.) The expectation value of Xi can be obtained from the

group algebra,

〈~η; j| ~X |~η; j〉 = 〈0; j|
[

~X − η̂η̂ · ~X + η̂(η̂ · ~X cosh η +
√

θJ sinh η)
]

|0; j〉

= j
√

θη̂ sinh η . (4.5)

It is immediately obvious that condition (b) in section 2, eq. (2.3), is not satisfied as

〈~η; j|(η̂ · ~X)2|~η; j〉 − 〈~η; j|η̂ · ~X|~η; j〉2 =
jθ

2
(cosh η)2 (4.6)

is of the same order as 〈~η; j|η̂ · ~X |~η; j〉2. More generally

〈~η; j|ei~q· ~X |~η; j〉 =

(

cosh

√
θq

2
− i sinh

√
θq

2
sinh η q̂ · η̂

)−2j

, (4.7)

which does not lead to condition (c), eq. (2.4). The desired properties can be recovered in

the large j small θ limit, with jθ = θ̄ fixed. θ̄ sets the noncommutativity scale. To order

1/j (4.7) goes over to

〈~η; j|ei~q· ~X |~η; j〉 = exp

[

i〈~η; j|~q · ~X |~η; j〉 − 1

4
θ̄q2 − 1

4j
〈~η; j|~q · ~X |~η; j〉2

]

. (4.8)

To lowest order in 1/j we reproduce (3.5) with θ replaced by θ̄ which, following the earlier

discussion, shows that in the large j limit SO(1, 2) contracts to the Heisenberg-Weyl group.

To order 1/j (4.6) takes on the form

〈~η; j|(η̂ · ~X)2|~η; j〉 − 〈~η; j|η̂ · ~X|~η; j〉2 =
1

2
θ̄ +

1

2j
〈~η; j|η̂ · ~X|~η; j〉2 . (4.9)

This has the effect of introducing two very disparate distance scales,
√

θ̄ and
√

jθ̄. For

distances less than
√

jθ̄ the fluctuations are fixed at the scale of the noncommutativity

parameter
√

θ̄, while for distances on the order of or greater than
√

jθ̄ the fluctuations

grow as the distance itself divided by
√

j. Clearly j has to be very large. We will return

to a discussion of this point in section 6.

The observation that 〈~η; j| ~X |~η; j〉 = j
√

θ sinh η η̂ and (2.6) leads to
∫

d~xf(~x) → j2θ

∫

sinh η dη dη̂〈~η; j|f( ~X)|~η; j〉 ,

∂jF (~x) → −i

j
√

θ
[Kj , f( ~X)] . (4.10)
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Again, one has to check whether a large momentum-momentum uncertainty has been

introduced. Using Jacobi identities and the algebra of the Ki’s and of J ,

(∂i∂j − ∂j∂i)ψ(~x) → −i

jθ̄
[J, ψ( ~X)] . (4.11)

As the expectation value of [J, ψ( ~X)] will be of the order or less than that of ψ( ~X) the

momentum-momentum uncertainty will be of the order of 1/(jθ̄) which, by the previous

argument, will be very small.

5. Three dimensional noncommutativity based on coherent states of the

SO(3, 1) group

As in the case of SO(2, 1) the generators of three dimensional Lorentz group, SO(3,1)

break up into two classes, the compact ordinary angular momenta Ji’s and noncompact

Ki’s transforming as a vector under angular momentum and with

[Ki,Kj ] = −iεijkJk . (5.1)

The representations of SO(3, 1) [13] are made up of towers of the (2j + 1) dimensional

unitary representations of SO(3), |j,m〉. We shall be interested in those that start with

j = 0 and thus contain |0, 0;κ〉, |1,m : κ〉, |2,m;κ〉, . . .. The value of the Casimir operator

κ2 = K2 − J2 (which we take to be positive) determines the action of the operators Ki

on the angular momentum states. The other quadratic Casimir operator ~K · ~J = 0; in the

notation of ref. [13] we are dealing with representations labeled by l0 = 0 and −l21 = κ2 +1.

It is easy to note that choosing ~X to be linear in the generators will not work. From the

experience of the previous sections, where a Levi-Civita symbol appeared in the definition

of ~X, we are led to

Xi =

√
θ

2
εijk(JjKk + KkJj) (5.2)

with

[Xi,Xj ] = −iθεijkJk(K
2 + J2) (5.3)

and

[Ki,Xj ] = −i
√

θ
[

δij(K
2 + J2) − KjKi − JjJi

]

(5.4)

from which, as outlined in previous sections, we can define a derivative.

Let us first look at the expectation values in states of definite κ with1 κ À 1

〈~η;κ|η̂ · ~X|~η;κ〉 = 〈0, 0;κ| cosh 2η η̂ · ~X (5.5)

+

√
θ

2
sinh 2η

[

~K2 − (η̂ · ~K)2 + ~J2 − (η̂ · ~J)2
]

|0, 0;κ〉 =

√
θκ2

3
sinh 2η ,

1One way these transformations can be understood is to note that there is an analogy between ~K, ~J

and ~E, ~H of electromagnetism. ~X is the analog of the Poynting vector or the T0i components of the

energy-momentum stress tensor; T00 ∼ ( ~J2 + ~K2)/4 and Tij ∼ δij( ~J2 + ~K2)/4 − (JiJj + KiKj)/2.
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while

〈~η;κ|η̂ × ~X|~η;κ〉 = 〈0, 0;κ| cosh η η̂ × ~X

−sinh η

2

(

η̂ × ~Kη̂ · ~K − η̂ · ~Jη̂ × ~J
)

|0, 0;κ〉 = 0 . (5.6)

Details of the proof that these coherent states minimize ~X2 + A(η̂ · ~X)2, with ~X defined

in (5.2), are given in appendix B.

The leading, in κ2, contributions to the expectation values of (η̂ · ~X)n will come from

〈0, 0;κ|( ~K2 − (η̂ · ~K)2)n|0, 0;κ〉. In order to satisfy conditions (b) an (c) of section 2 this

matrix element has to be equal to (2κ2/3)n. Such a condition was satisfied for the two

dimensional case discussed in section 4 but due to the (η̂ · ~K)2 terms it is not satisfied

in the present three dimensional formulation. These matrix elements are evaluated in the

appendix C, (C.6). To leading order in κ

〈~η;κ|(η̂ · ~X)n|~η;κ〉 =

√
π

2

Γ(n + 1)

Γ(n + 3
2)

[

3

2
〈~η;κ|η̂ · ~X |~η;κ〉

]n

. (5.7)

This is unacceptable as it would lead to large fluctuations in the expectation values of the

position operator. With the observation

κ2n
0 =

√
π

2

Γ(n + 1)

Γ(n + 3
2 )

1

π

∫ κ0

0

dκ
√

κ2
0 − κ2

∂

∂κ
κ2n+1 (5.8)

we follow the discussion outlined around (2.5) and consider a new averaging procedure

defined by double bras and kets

〈〈~η|O( ~J, ~K)|~η〉〉 =
1

π

∫ κ0

0

dκ
√

κ2
0 − κ2

∂

∂κ
κ〈~η;κ|O( ~J, ~K)|~η;κ〉. (5.9)

In (5.8) and (5.9) κ0 À 1 replaces κ as a parameter determining the representations of

SO(3, 1) used. (The lower limit in these integration can be replaced by κ1 as long as

κ1/κ0 ¿ 1.)

With this new choice of states we have

〈〈~η|η̂ · ~X|~η〉〉 =

√
θκ2

0

2
sinh 2η ,

〈〈~η|(η̂ · ~X)2|~η〉〉 − 〈〈~η|η̂ · ~X|~η〉〉2 = θκ2
0 +

4

κ2
0

〈〈~η|η̂ · ~X|~η〉〉2 ; (5.10)

As in section 4 we go to the large κ0 limit with θκ2
0 = θ̄ fixed and it is θ̄ that sets the

coordinate noncommutativity scale. To order 1/κ2

〈〈~η; j|(η̂ · ~X)2|~η; j〉〉 − 〈〈~η; j|η̂ · ~X |~η; j〉〉2 = θ̄ +
4

κ2
0

〈〈~η; j|η̂ · ~X |~η; j〉〉2 . (5.11)

Again, there are two distance scales. For distances less than κ0

√
θ̄ the fluctuations are

fixed at the noncommutativity parameter
√

θ̄, while for distances on the order of or greater

than κ0

√
θ̄ the fluctuations grow as the distance itself divided by κ0. Discussion of these

results is left for the next section.
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6. Conclusion

We have formulated a coordinate noncommuting quantum mechanics where the measure-

ment of position operators, or functions of such operators, is determined by their expec-

tation values between generalized coherent states. The concepts of integration and of

differentiation can be incorporated. This formulation is invariant under the full rotation

group and translation invariance holds at the price of introducing a gauge potential. As

the measurement of none of the coordinate components is sharp, special attention has to be

paid to control any of the fluctuations in the values of these components. This is achieved

only for the coherent states built on representations with very large values of the relevant

Casimir operators.

Details were presented for two and three dimensions. Extensions to higher dimensions,

though algebraically tedious, are straight forward. Coherent states for SO(N, 1) groups

with N > 3 are discussed in [6]. The position operators may be taken as

Xi =

√
θ

2
(MijKj + KjMij) , (6.1)

where the Mij ’s are the generators of the SO(N) subgroup of SO(N, 1). Extension to

where time is one of the noncommuting directions is problematical not only for general

reasons having to do with violations of unitarity [14] but also due to technical difficulties

of extending the present formalism. Naively, to introduce time as one of the noncommut-

ing coordinates one might try to construct coherent states based on the de Sitter group,

SO(N, 2) with SO(N, 1) being the symmetry group and the space-time operators in the

coset SO(N, 2)/SO(N, 1). (It is amusing to note that one of the early attempts at non-

commutativity [15] placed the space-time coordinates into such a coset space.) Although

such coherent states have, to this authors knowledge, not been studied one problem can

be seen immediately: time becomes periodic. This may be noted easily by looking at the

previously studied group SO(1, 2), now thought of as a de Sitter group.

An intriguing result of this work is displayed in (1.1) where fluctuations in the mea-

surement of any coordinate introduce two distance scales. The first scale is the expected

one set by the noncommutativity parameter
√

θ̄ while the other one depends on the value

of the Casimir operator κ2 and is equal to
√

θ̄κ and induces fluctuations proportional to the

length itself. This relation, summarized in (1.1) is reminiscent of the generalized Heisenberg

uncertainty relation [16]

∆x∆p ≥ ~

2
+

θ(∆p)2

~
. (6.2)

√
θ̄ is presumably very small, possibly of the order of the Planck length λP ; κ which acts

like a strain will have to be large. Limits of κ > 1021 will be available from measurements

at the LIGO Observatory [17].

A. Coherent states as solutions of the SO(2, 1) variational problem

With the choice for coordinate operators made in section 4 we will show that the coherent

states minimize the the expectation of ~X2 +A(η̂ · ~X)2 with the expectation of ~X fixed. We
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may take η̂ along the x direction. We , thus, have to show that for some η and j |ηx̂; j〉
satisfies the eigenvalue equation

[ ~X2 + A(x̂ · ~X)2 + λx̂ · X]|ηx̂; j〉 = c|ηx̂; j〉 (A.1)

with λ a Lagrange multiplier and c the eigenvalue. This is equivalent to showing

e−iηKx [ ~X2 + A(x̂ · ~X)2 − λx̂ · X]eiηKx |0; j〉 = c|0; j〉. (A.2)

The unitary transformation on the left hand side of the above can be carried out explicitly

and using the fact that K−|0; j〉 = 0 we have to set the coefficients of K2
+ and K+ to zero.

This leads to the conditions

1

4

[

(1 + A) cosh2 η − 1
]

K2
+ = 0 ,

(2j sinh η + λ)K+ = 0 , (A.3)

or, with 〈x̂ · ~X〉 = j
√

θ sinh η, we find

A = − 〈x̂ · ~X〉
√

〈x̂ · ~X〉2 + jθ̄
. (A.4)

B. Coherent states as solutions of the SO(3, 1) variational problem

We will follow the same procedure for N = 3 as we did in appendix A for N = 2; this time

we take ~η to be along the ẑ direction and show that there are values of η and of κ that

lead to a solution of the eigenvalue problem

e−iηKz

[

~X2 + A(ẑ · ~X)2 + λẑ · ~X
]

eiηKz |0, 0;κ〉 = c|0, 0;κ〉 . (B.1)

After performing the unitary transformation and noting that |0, 0;κ〉 is annihilated by each

component of ~J we set the coefficients of K4
z and of K2

z to zero,

sinh2 η
[

(1 + A) cosh2 η − 1
]

K4
z = 0 ,

[(

cosh2 2η − κ2

2
sinh2 2η

)

− λ sinh 2η

]

K2
z = 0 . (B.2)

Again, with 〈ẑ · ~X〉 = (
√

θκ2 sinh 2η)/3, A is related to κ,

A =



1 −

√

1 +
9〈ẑ · ~X〉2

κ2θ̄







1 +

√

1 +
9〈ẑ · ~X〉2

κ2θ̄





−1

(B.3)
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C. Evaluation of certain SO(3, 1) matrix elements

The matrix element 〈0, 0;κ|
[

~K2 − (η̂ · ~K)2
]n

|0, 0;κ〉, for n < κ, needed in section 5 will

be evaluated. By rotational invariance we may set η̂ = ẑ and evaluate 〈0, 0;κ|( ~K2 −
K2

z )n|0, 0;κ〉. The states |l, 0;κ〉 are eigenstates of ~K2 with eigenvalue κ2 + l(l + 1) ∼ κ2.

In order to obtain 〈0, 0;κ|K2µ
z |0, 0;κ〉, with µ integer we evaluate the coefficients α

(2µ)
l in

the expansion

Kµ
z |0, 0;κ〉 = κµ

∑

l

(−i)l
√

2l + 1α
(µ)
l |l, 0;κ〉 ; (C.1)

l is restricted to even values. For the representation of interest and for κ À l the action of

Kz on the states |l, 0;κ〉 is [13]

Kz|l, 0;κ〉 = iκ

(

l√
4l2 − 1

|l − 1, 0;κ〉 − l + 1
√

4(l + 1)2 + 1
|l + 1, 0;κ〉

)

. (C.2)

It is straight forward to obtain the recursion relation for the α
(µ)
l ’s (α

(0)
0 = 1),

(2l + 1)α
(µ+1)
l = (l + 1)α

(µ)
l+1 + lα

(µ)
l−1 , (C.3)

whose solution is

α
(µ)
l =

1

2

(µ
2 )!(µ−1

2 )!

(µ−l
2 )!(µ+l+1

2 )!
(C.4)

and especially

α
(µ)
0 =

1

µ + 1
. (C.5)

From the above we obtain

〈0, 0;κ|( ~K2 − K2
z )n|0, 0;κ〉 = κ2n

∑

µ

(−1)µ
n!

µ!(n − µ)!

1

2µ + 1

= κ2n

√
π

2

Γ(n + 1)

Γ(n + 3
2 )

(C.6)
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